skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thiaudière, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Strain-transformable Ti-based alloys are known to display a superior combination of strength, ductility and strain-hardening and attracted considerable interest on recent years. They generally still display, however, a limited yield strength that can be possibly overcome by further precipitation strengthening of the developed systems. In that work, we developed a design strategy to reach a forged dual-phase (α+β) microstructure with TRIP/TWIP properties in a Ti–10V–2Fe–3Al alloy. The results showed an excellent combination of mechanical properties due to the strain-transformable deformed β-matrix. The investigation on the deformation mechanisms in the Ti–10V–2Fe–3Al alloy was accurately performed by means of both in-situ synchrotron XRD, mechanical testing followed by SEM/EBSD mapping and “post mortem” TEM microstructural analyses. Combined Twinning Induced Plasticity (TWIP) and Transformation Induced Plasticity (TRIP) effects were shown to be intensively activated in the alloy. The particular role of stain-induced martensite α″, acting as a relaxation mechanism at the α∕β interfaces, as well as the strong interactions between mechanical twins and primary α nodules were particularly highlighted. 
    more » « less